2017 Ph.D. (Chemical Engineering), University of Cambridge, United Kingdom
2010 B.Eng. (Chemical Engineering), University of Adelaide, Australia
2010 B.Fin., University of Adelaide, Australia
Academic and Professional Experience
2024 - Present Senior Lecturer, School of Business, Singapore University of Social Sciences
2023 - 2024 Senior Scientist, Singapore Institute of Manufacturing Technology
2019 - 2023 Scientist, Singapore Institute of Manufacturing Technology
2017 - 2019 Research Fellow, Singapore Institute of Manufacturing Technology
2017 - 2017 Part-time Lecturer, Nanyang Technological University
2016 - 2017 Project Officer, Nanyang Technological University and Cambridge Centre for Advanced Research and Education in Singapore
Selected Publications
Refeered Journal Articles:
W. Weng, M. Pratama, J. Zhang, C. Chen, E. K. Y. Yapp, R. Savitha. Cross-domain continual learning via CLAMP. Information Sciences, 676:120813, 2024. doi:10.1016/j.ins.2024.120813.
E. K. Y. Yapp, A. Gupta, X. Li. A layer-wise neural network for multi-item single-output quality estimation. Journal of Intelligent Manufacturing, 34:3131—3141, 2023. doi:10.1007/s10845-022-01995-0.2.
M. de Carvalho, M. Pratama, J. Zhang, E. K. Y. Yapp. ACDC: Online unsupervised cross-domain adaptation. Knowledge-Based Systems, 253:109486, 2022. doi:10.1016/j.knosys.2022.109486.
W. Weng, M. Pratama, C. Za’in, M. de Carvalho, R. Appan, A. Ashfahani, E. K. Y. Yapp. Autonomous cross domain adaptation under extreme label scarcity. IEEE Transactions on Neural Networks and Learning Systems, 2022. doi:10.1109/TNNLS.2022.3183356.
F. Mao, W. Weng, M. Pratama, E. K. Y. Yapp. Continual learning via inter-task synaptic mapping. Knowledge-Based Systems, 222:106947, 2021. doi:10.1016/j.knosys.2021.106947.
W. Weng, M. Pratama, A. Ashfahani, E. K. Y. Yapp. Online Semi supervised Learning Approach for Quality Monitoring of Complex Manufacturing Process. Complexity, 2021:1–16, 2021. doi:10.1155/2021/3005276.
E. K. Y. Yapp, X. Li, W. F. Lu, P. S. Tan. Comparison of base classifiers for multi-label learning. Neurocomputing, 394:51–60, 2020. doi:10.1016/j.neucom.2020.01.102.
N. Q. K. Le, D. T. Do, F.-Y. Chiu, E. K. Y. Yapp, H.-Y. Yeh, C.-Y Chen. XGBoost improves classification of MGMT promoter methylation status in IDH1 wildtype glioblastoma. Journal of Personalized Medicine, 10:128, 2020. doi:10.3390/jpm10030128.
N. Q. K. Le, Q.-T. Ho, E. K. Y. Yapp, H.-Y. Yeh, Y.-Y. Ou. DeepETC: a deep convolutional neural network architecture for investigating and classifying electron transport chain’s complexes. Neurocomputing, 375:71–79, 2020. doi:10.1016/j.neucom.2019.09.070.
J. N. Sua, S. Y. Lim, M. H. Yulius, X. Su, E. K. Y. Yapp, N. Q. K. Le, H.-Y. Yeh. Incorporating convolutional neural networks and sequence graph transform for identifying multilabel protein Lysine. Chemometrics and Intelligent Laboratory Systems, 206:104171, 2020. doi:10.1016/j.chemolab.2020.104171.
N. Q. K. Le, E. K. Y. Yapp, N. Nagasundaram, H.-Y. Yeh. Classifying promoters by interpreting the hidden information of DNA sequences via deep learning and combination of continuous FastText N-grams, Frontiers in bioengineering and biotechnology, 7:305, 2019. doi:10.3389/fbioe.2019.00305.
10. N. Q. K. Le, E. K. Y. Yapp, N. Nagasundaram, M. C. H. Chua, H.-Y. Yeh. Computational identification of vesicular transport proteins from sequences using deep gated recurrent units architecture. Computational and Structural Biotechnology Journal, 17:1245–1254, 2019. doi:10.1016/j.csbj.2019.09.005.
N. Q. K. Le, T.-T. Huynh, E. K. Y. Yapp, H.-Y. Yeh. Identification of clathrin proteins by incorporating hyperparameter optimization in deep learning and PSSM profiles. Computer Methods and Programs in Biomedicine, 177:81–88, 2019. doi:10.1016/j.cmpb.2019.05.016.
N. Q. K. Le, E. K. Y. Yapp, Q.-T. Ho, N. Nagasundaram, Y.-Y. Ou, H.-Y. Yeh. iEnhancer-5Step: Identifying enhancers using hidden information of DNA sequences via Chou’s 5-step rule and word embedding. Analytical Biochemistry, 571:53–61, 2019. doi:10.1016/j.ab.2019.02.017.
N. Q. K. Le, E. K. Y. Yapp, Y.-Y. Ou, H.-Y. Yeh. iMotor-CNN: Identifying molecular functions of cytoskeleton motor proteins using 2D convolutional neural network via Chou’s 5-step rule. Analytical Biochemistry, 575:17–26, 2019. doi:10.1016/j.ab.2019.03.017.
N. Q. K. Le, E. K. Y. Yapp, H.-Y. Yeh. ET-GRU: Incorporating multi-layer gated recurrent units and position specific scoring matrices to identify electron transport proteins. BMC Bioinformatics, 20:377, 2019. doi:10.1186/s12859-019-2972-5.
C. S. Lindberg, M. Y. Manuputty, E. K. Yapp, J. Akroyd, R. Xu, M. Kraft. A detailed particle model for polydisperse titanium dioxide aggregates. Journal of Computational Physics, 397:108799, 2019. doi:10.1016/j.jcp.2019.06.074
N. Nagasundaram, E. K. Y. Yapp, N. Q. K. Le, B. Kamaraj, A. M. Al-Subaie, H.-Y. Yeh. Application of computational biology and artificial intelligence technologies in cancer precision drug discovery. BioMed Research International, 2019. doi:10.1155/2019/8427042.
N. Nagasundaram, E. K. Y. Yapp, N. Q. K. Le, H.-Y. Yeh. In silico screening of sorbitol derivatives to inhibit viral matrix protein VP40 of Ebola virus. Molecular Biology Reports, 46: 3315–3324, 2019. doi:10.1007/s11033-019-04792-w.
J. W. Martin, R. I. Slavchov, E. K. Y. Yapp, J. Akroyd, S. Mosbach, M. Kraft. The Polarization of Polycyclic Aromatic Hydrocarbons Curved by Pentagon Incorporation: The Role of the Flexoelectric Dipole. Journal of Physical Chemistry C, 121:27154–27163, 2017. doi:10.1021/acs.jpcc.7b09044.
S. Wu, E. K. Y. Yapp, J. Akroyd, S. Mosbach, R. Xu, W. Yang, M. Kraft. Modelling of soot formation in a diesel engine with the moment projection method. Energy Procedia, 142:4092–4097, 2017. doi:10.1016/j.egypro.2017.12.330.
S. Wu, E. K. Y. Yapp, J. Akroyd, S. Mosbach, R. Xu, W. Yang, M. Kraft. Extension of moment projection method to the fragmentation process. Journal of Computational Physics, 335:516–534, 2017. doi:10.1016/j.jcp.2017.01.045.
S. Wu, E. K. Y. Yapp, J. Akroyd, S. Mosbach, R. Xu, W. Yang, M. Kraft. A moment projection method for population balance dynamics with a shrinkage term. Journal of Computational Physics, 330:960–980, 2017. doi:10.1016/j.jcp.2016.10.030.
E. K. Y. Yapp, C. G. Wells, J. Akroyd, S. Mosbach, and M. Kraft. Modelling PAH curvature in laminar premixed flames using a detailed population balance model. Combustion Flame, 34:1861–1868, 2017. doi:10.1016/j.combustflame.2016.10.004.
E. K. Y. Yapp, R. I. A. Patterson, J. Akroyd, S. Mosbach, E. M. Adkins, J. H. Miller, and M. Kraft. Numerical simulation and parametric sensitivity study of optical band gap in a laminar co-flow ethylene diffusion flame. Combustion Flame, 167:2569–2581, 2016. doi:10.1016/j.combustflame.2016.01.033.
E. K. Y. Yapp, D. Chen, J. Akroyd, S. Mosbach, M. Kraft, J. Camacho, and H. Wang. Numerical simulation and parametric sensitivity study of particle size distributions in a burner-stabilised stagnation flame. Combustion Flame, 162:2569–2581, 2015. doi:10.1016/j.combustflame.2015.03.006.
Book chapter:
E. K. Y. Yapp and M. Kraft. Modelling soot formation: model of particle formation. In F. Battin-Leclerc, J. M. Simmie, E. Blurock (Eds.), Cleaner Combustion—Developing Detailed Chemical Kinetic Models (pp. (389–407)). London: Springer, 2013. doi: 10.1007/978-1-4471-5307-8_15.
Refeered Conference Papers:
E. K. Y. Yapp, N. C. N. Nam. Anomaly detection on MVTec AD using VQ-VAE-2. 2024 57th CIRP Conference on Manufacturing Systems (CMS). 2024, accepted.
S. Pan, H. Luo, M. C. H. Chua, K. Pugalenthi, E. K. Y. Yapp. A review of similarity-based few-shot learning methods for time series classification in manufacturing. 2024 6th International Conference on Industrial Artificial Intelligence (IAI). 2024, accepted.
M. de Carvalho, M. Pratama, J. Zhang, H. Chua, E. K. Y. Yapp. Towards cross-domain continual learning. 2024 IEEE 40th International Conference on Data Engineering (ICDE), 1131–1142, 2024. doi:10.1109/ICDE60146.2024.00092.
A. Ashfahani, M. Pratama, E. Lughofer, E. Y. K. Yee. Autonomous Deep Quality Monitoring in Streaming Environments. 2021 International Joint Conference on Neural Networks (IJCNN), 1–8, 2021. doi:10.1109/IJCNN52387.2021.9534461.
D. N. C. Nam, T. Van Tung and E. Y. K. Yee, Quality monitoring for injection moulding process using a semi-supervised learning approach. IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, 1–6, 2021. doi:10.1109/IECON48115.2021.9589593.
N. J. Punnoose, P. Vadakkepat, A.-P. Loh, E. K. Y. Yap. Data-driven quality estimation for production processes with lot-level quality control. IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, 1–6, 2021. doi:10.1109/IECON48115.2021.9589245.
K. J. Lee, E. K. Y. Yapp, X. Li. Unsupervised probability matching for quality estimation with partial information in a many-to-one input-output scenario. 2020 The 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), 1432–1437, 2020. doi:10.1109/ICIEA48937.2020.9248430.
J. Camacho, A. V. Singh, W. Wang, R. Shan, E. K. Y. Yapp, D. Chen, M. Kraft, H. Wang. Soot particle size distributions in premixed stretch-stabilized flat ethylene–oxygen–argon flames. Proceedings of the Combustion Institute, 36:1001–1009, 2017. doi:10.1016/j.proci.2016.06.170.
D. Chen, Z. Zainuddin, E. Yapp, J. Akroyd, S. Mosbach, and M. Kraft. A fully coupled simulation of PAH and soot growth with a population balance model. Proceedings of the Combustion Institute, 34:1827–1835, 2013. doi:10.1016/j.proci.2012.06.089.
More Information
2021 Best Research Project Award, Team Member (Work Package 3.4 Lead), Cyber-Physical Production System - Towards Contextual and Intelligent Response, Singapore Institute of Manufacturing Technology
2011 Gates Cambridge Scholarship, University of Cambridge
2010 University Medal, University of Adelaide
2005 International Scholarship, University of Adelaide
Computational Modelling; Machine Learning; Deep Learning; Quality Monitoring in Manufacturing